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In addition, a new class of problem is solved using the Wiener-Hopf approach.
The problem treats the case of a continuous performance index, together with
a continuous plant and sampled measurements to specify both the optimal
(discrete) digital control law and the optimal (continuous) data hold to be
used for coupling the digital control law to the plant actuators.
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SECTION I

INTRODUCTION

The objective of the research effort reported herein was to develop, via
the Wiener-Hopf (W-H) approach, an optimal closed-loop solution for digital
control of continuous plants using a contimuous cost function. The impor-

tance of the problem class resides in two facts:
@® Solution consists of two parts

- optimal discrete control law
— optimal continuous data hold

® Use of a continuous cost function assures account-
ability for the inter-sample behavior of the continuous
plant response.

sachtaii

This is worthy of further elaboration. The use of a continuous cost
function in conjunction with a continuous plant model yields a control law
that is optimal at all instants in time. However, the only constraint placed
on the closed-loop system response is at the sampling instances whel: a dis-
crete cost function is employed. The "inter-sample"” behavior of the con-
tinuous plant response can be very unsatisfactory. This is especially so if
the data rate is low and the open-loop plant contains lightly damped modes.
AMlso, when a discrete cost function is minimized, the data hold (the coupler
between the computer and the control actuators) is specified arbitrarily by
the designer (more often than not, a zero-order data hold is utilized). On

the other hand, if a continuous cost function is minimized via the Wiener-

Hopf approach, the optimal solution specifies both the control law and the
optimal form of the coupler. :

" As will be shown in Section IV, the combined coupler-control law problem
yields a Wiener-Hopf equation that is more formidable than its discrete or
continuous counterparts. Therefore, it is worthwhile to comment on the

issues involved in pursuing a solution using this approach.

The advantages of using modern matrix Wiener-Hopf minimization procedures
are not widely appreciated in today's control community. The primary reason

for this is that many experienced scientists and engineers have been alienated

TR-1125-1 1
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by the difficulty in applying the spectral factorization solution method
which Wiener used (Ref. 1). Very few optimal control practitioners are
cognizant of the fact that Wiener-Hopf equations can be solved by a direct
solution technique which makes spectral factorization unnecessary (Refs. 2
and 3) and uses mathematics no more difficult than partial fraction expan-
sions. Moreover, the method handles the multi-controller cases as well as
unstable, nonminimum phase plants. We believe that increased awareness of
the basic and simple methods available for solving Wiener-Hopf equations
can increase modern control engineering productivity and will encourage a
more integrated use of time domain and frequency domain techniques for
problem solution.

The technical development proceeds in the sections which follow. Sec-
tion II reviews the W-H method for solving the continuous regulator problem.
This is not strictly necessary since the basic solution principles for the
regulator are contained in Ref. 3. However, a clear understanding of the
manner in which the direct method works will make the solution method used
in the optimal coupler problem easier to follow. Moreover, a review of the
regulator case affords the opportunity to make clear that the W-H approach
provides a unifying framework wherein no modifications to the basic approach
are required in order to treat singular cases. In particular, the "bulleted"
items in the abstract will be clarified using a series of numerically tract-
able examples.

Section III deals with the optimal linear continuous stochastic control
problem via the Wiener-Hopf formlation. It is necessary to treat this case
because there is no established literature on solution of these optimization
problems by means of Wiener-Hopf techniques. First, the time domain form
of the IQG optimal stochastic control problem is treated using frequency
domain methods. It is shown that the steady-state gains of the Kalman filter
can be found using the W-H approach and linear solution methods. That is,
it is not necessary to solve a nonlinear Riccati equation. WNext, an alter-
native W-H formulation is postulated which does not make use of the separa-
bility principle. This leads to a rather interesting formulation in that
two spectral matrices are involved. One is recognizable as being the regulator

spectral matrix, while the other is recognized as the spectral matrix associated

TR-1125-1 2
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with the filter/observer problem. It is show: that this W-H formilation
survives, without singularity, the limiting condition wherein the measure-
ment :roise vector is set identically equal to zero. This yields the optimal
observer solution without the necessity of resorting to limiting forms or

special partitioning (fo~ example, Refs. 4 and 5).

Section IV treats the optimal coupler provl-m using an extension of the
second approach discussed in Section III (i.e., the formulation which does
not make us¢ of the separability principle). Again, there will be two spec-
tral matrices which appear in the W-H equation; the 'regulator" spectral
matrix remains a function of the complex frequency variable s, but now the

"filter observer" spectral matrix will depend on the delay operator z = esT,

It must be noted that the situation with respect to the desigh of a
digital controller using a continuous cost function will suffer the same
shortcomings presently associated with continuous regulator design. That
is, questions pertaining to the selection of the Q's and R's of the regulator
weighting matrices (so as to produce designs which are not only "optimal"
but "satisfactory" as well) will obviously persist for the optimal coupler
problem. In this regard, it is hoped that the examples presented herein
(which emphasize the use of non-diagonal Q and R, R < 0, etc.) will encourage
optimal control practitioners to ease self-imposed restrictions placed on

the weighting matrices.

TR-1125-1 3
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SECTION II

LINEAR REGULATOR PROBLEM

The open-loop plant model used throughout the paper will be
X = Fx+ Gu i

X(s) [Is - FI7' qu + [Is - F! x(o) (1)

AU + Bx(o)
Assuming a control law of the form
U = =KX (2)

results in the closed-loop configuration shown in Fig. 1. (K is not

restricted to being only a gain matrix.) The continuous cost function:

1 c+Jw .
J = 2—“3 cmgo (X*Qx + U*RU) ds (3)

X,=X'(-8) ; U, =U'(-s)
is minimized by taking a variation on U such that
U = Uy + Uy (%)

where Ug is the optimal control and U, is any physically realizable (exists

for t 2 0) but arbitrary variation. The first variation gives a necessary
condition for an optimum (refer to Ref. 3 for the details) as:

TR-1125-1 4
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x(0) —» B

Figure 1. Closed-Loop Regulator

1 C+ joo
Je = EITJ: ’[c U1*\]/(S) ds

-J’m

J'm us(t) ¢(t) dt = 0 (5)

-]

where

[R + AU, + A,9B x(0)

W ( 6)

Since u'(t) exists for t > 0, a sufficient condition for satisfying Eq. 5

is that y(t) exists only for t < O; hence, the product u{(t) v(t) is iden-
tically zero.

The second variation,

C+ joo

!
Ja = 53 ];_Jw U1 [R + A, M]U, ds (7

can then be investigated to see if the extremum obtained is truly a minimum

(Jq > 0) or a maximum (J3 < O). Note that ¢ in Eq. 7 is not necessarily the

TR-1125-1 5
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same ag the ¢ o g, 90 Sinee u' (8) exists Cor posttive Cime, 1ta Laplace

(two-atlded) transtorm exists fn the s=plane oo domain where o v 0. On the
other hand, (1) extats for t - 0, and s transform exists in the s-plane fu
a domain where o -« 0...  Therefore, o (which detines the poles enclosed by the

contour) must aatisfy the condition
¢oomin o, 0 (8)

tn order that Uy, and § have a common strip of convergence,  lPor Eq. v to be
fdentically wcero, the frequency domain vequirvement. {a to close a contour to
the left and enclose no poles; therefore, the sum off the residues (the value
of the integral) ls zero.  The path traversed parailel Lo the Jo-axis is
determined by the value ot ¢ In Eq. 8 and {8 not necessarily the jo-axis

ttself (¢ = 0).

To fumure y(s) exists for o+ 0, (0.8, exists in some lett halt planc),
we must pick Up in such a manner that any poles ot Fgo O whiceh exist in some
right half plane (c.g., positive time fnctions) cancel ident teally into each

ad every numerator of Kg. 6,

Ug will have the form
U W(s)x(0) ()
The required compenaat.ion can be computed as
K W AWl (10)

For the gpecinl ease where K ois a galn matelx, it suf'fices to use the Initial

value theorem:

. Mmoo ,
K o e o —W() ()

Finally, it {a not neceasanry to compute the closed-loop transter fanct ions

using
X(a) [l = 1 U.Kl_‘x(m (1

TR=11"-1 e
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since

X = [B+ AW] x(0) (13)

will work just as well. In fact, Eq. 13 persists even in the singular cases

where the K matrix has infinite entries.
What are the candidate poles for Ug? These are picked from (Refs. 2, 3):
P-1
det[R + A 4QA] = (DD) AA (14)

where P is the number of controllers, D represents the open-loop poles, and

A represents the closed-loop poles.

What are the candidate zeros of Ug? These are unknown. Therefore, one

simply specifies polynomials with unknown coefficients. The number of

unknown coefficients is equal to the number of "positive time' poles which
must be cancelled. More precise details are available in Refs. 2 and 3; our
thrust here is to demonstrate how the simple principle of positive pole

cancellation yields the solution without the need to factorize R + AyxQA.

A. SINGLE CONTROL POINT EXAMPLE

Let
X = 2x + 3u
so that
x(s) = %’é%+s—1-5x(o) = AU + Bx(0)

Notice that the unstable open~loop pole exists for ¢ > 2. Suppose R = 1,
Q= -1/3 (Q < 0), then the W-H equation

TR-1125-1 T
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[R+A,4]U, + A,38x(0)

3(=1/3 3
[1+ £s1—-2 -(?-——ET]UO

L 2=/3) (1)
(~s-2) (s-2) ¥

= ¥ (15)

or

-2 4+ 1 1 AR x(0)
Up = =—————— x{0 = —n — =—L 15)
(*sgw I T (

Since det[R + AxQA] = (=s + 1)(s + 1), the optimal closed-loop pole is at
s=-1. Let Uy =&/A=¢/(s + 1) and substitute into Eq. 15:

Cs+(s+1) € ) ,0) = y (16)

—s2 + & sS+1  _g24y

Only one positive time function pole (s — 2) survives in Eq. 16; therefore,

only one unknown coefficient is needed:

(—s + 1)a, - x(0)
(—s2 + 4)

The numerator must contain (s — 2); therefore, the numerator equals zero

when s = 2,

(-s + 1)ag = x(0) = ag = -x(0)

8=2

TR-1125-1 8
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Thus
Up = wx(0) = s'+11 x(0) (17a)
v = MO G (17)
K = sl_i.mm -sW(s) = 1 (17¢)
X = [B + AW] x(0)
1 3 =1 _ 1
= [s—2+s—2 (s+1)]x(0) - s+1x(0) : (17a)
Evaluating the first variation
C+ Joo
Jeo = 5%3 Uiy v(8) ds

n
n
2]
Q 1]
(9]
+
[ SR
8
<
*
[}
[/]
|
n
2
0

= O ¢ < min -2, -0y

To see that J, = O, consider any realizable U; (not necessarily stable) that
exists for ¢ > gy. The Uy, exists for ¢ < —o, and the c selected is the
minimum of —2 or —0q- This is sketched in Fig. 2. Closing the contour to
the left using ¢ < min g4,—2 encloses no poles. The summation of the residue
is zero, and the value of the first variation is identically zero. Consider

next the second variation:

TR~1125-1 9
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jw
Pole

Figure 2. s-Plane Domains

C+ joo
Jda = f Uie[R+A,A]U, ds
o]

-Joo

C+joo -
1 A A
= — U -_— U das
a+d .l;-jco ( e b » 1)

1 C+Joo
= o F ds
21(-) -[C-J@ F*

ml
FY B
C|

wi‘zdt>0 (18)
(o]

o=

An interesting observation now can be made regarding the domains of
existence when the open-loop plant is unstable. D = (s — 2) requires
¢ < -2, and therefore there is no common strip of convergence. At this
point two options are available. The admissible Uy can be restricted so
that AU,/D has a common strip of convergence with Uj,5/D, insuring that
Eq. 18 is both positive and finite. On the other hand, the only real issue
is whether or not the second variation is positive. Thus, there is no need
to restrict U; if one is willing to accept a positive, if unbounded, second

variation.

TR=-1125-1 10
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B. SIMPLIFIED W-H CONDITIONS

! It is not necessary to work with the complete W-H description as given
] in Ey. 6. Equation 6 c&n be reduced to two computationally simpler require-
ments.
Since
det(R + A,Qa] = (D)T! AR (19)
let _
"4
U = &(s)/a (20)

where £(s) is an unknown polynomial matrix. Further, describe the plant
matrices, A and B, in terms of the open-loop poles and their adjoint

matrices. That is,

A2 B2
A =% , B=% , D = Open-loop poles (21)

The W-H equation becomes:

[RDD + A2QA2]E(s) + [Aa2qB21x(0)

- = v (22)
DDA

From the previous discussion it is clear that each and every numerator of y
must contain D and A, Therefore, each numerator of ¥ must be zero for those
values of s such that D = A = 0. (The poles of D may be located anywhere in
the s plane, It is the fact that they exist in some half plane for which

0 > 09 which "tags" the roots of D as giving rise to positive time functions,)
When D = 0, Eq. 22 reduces to

ASQ[A%E(s) + AB®x(0)] = O (23) |

TR-1125=~1 1"
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Since AJQ is already analytic in some left half plane, it need not be
considered. Thus, we have a first W-H condition,

1st W-H Condition:
A%(s) + aB%x(0) = 0 , D=0 (24)
Next, let A = 0 in Eq. 22 and obtain the second W-H condition:
2nd W-H condition:
[RDD + AZqA%]E(s) = 0 , A=0 (25)

Notice that the first W-H condition persists even in the limiting case
of G —=0. Furthermore, even though Eqs. 24 and 25 are matrix equations,
it usually suffices to pick only one component of each since Eq. 19 assures
linear dependence when D = & = 0. For example, using the first component
of Eq. 24 will produce the same linear set of equations, in terms of the
unknown entires of &(s), as will the second (or third) component of Eq. 24.
Finally, note that nowhere does R |
that makes the direct solution method ideal for the evaluation of singular

appear in the W-H conditions — a fact

cases. A three-state, two-control-point example will be used to clarify the
mathematical details.

Let
0 1 0 0 1 1
x = -5 1 5 Ix+1-4 21]u (26a) J
i 0 =1 1 o '
TR-1125-1 12 |
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—-Lg+1 (8+1)°

s(~ks+1) s(2s-3)

s2—g4+ 1 8+ 1
X = AU + Bx(0) = U(s)
s(s2 + )
82— s+ 1 5
~5s8 s(s+1) 58
8—1 1 2-8+5
+ x(0) (26b)
s(s2 + b)
Suppose
o 0 94
R = s A = 0 (27)
0 30 =705
so that R < 0, Q,-1 does not exist. This is a so-called "cheap control prob-

lem," since there is no weight on the first controller. A routine but tedious
computation gives:

’—70531‘ +22096% | 32983 + 56482
+61 f +846s + 611
______ r—---=-- |
—32983 + 56482 | 3086 + 1465 (28) i
, | Bues+611 | 37824 6m ]
R+A,QA = - o3 s D = s(s2+1b)

Evaluating the determinant of R + A4QA we find

(29)
det[R+ Ax@Al @ s2+25+2 = (s+1)24(1)2 _ A =

#Read the symbol o as "contains the factor".

TR-1125-1 13
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Since there is no weight on U,;, we find that the order of the closed-loop
system has been reduced by one. In order to force both D and A to cancel
into ¥ now requires only 5 unknown coefficients rather than 6 (D is third

order, A is second order). Let

2
aps” + a8+ a,

I; b1s+b2
Up = > x(0) = wx(0) : (30)
: 8 +28+2

The "burden'" of the extra coefficient is assumed by the first controller,

X to U will be infinite, since U is not proper-rational. Consider the W-H
condition; only one component of each matrix need be considered. Evaluate
the first W-H condition for D = O and obtain three equations in the five

unknowns. Then evaluate the second W-H condition to get two equations in

the five unknowns (for complex roots equate real to real and imaginary to
imaginary).

18t W-H Condition:
(—bs+1)(80s® + ay8 +ap) + (82 + 28 + 1)(b18 +by)
= -A[s2-1 is+1; 51x(0) (31)
8 = 0,+2] (D = 0)
2nd W-H Condition:
(70551‘+220982+611)(a032+a1s+a2)

+ (32983 + 56482 + 8468 + 611)(by8 +by) = O (32)

! 8=~-1+] (a =0

TR-1125-1 14
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We obtain five equations in five unknowns:

s = 2j, Real
s = 23, Imag
s=0

s ==1+j, Real

8 =~1+j, ImajJ

The solution is:

TR-1125-1

[ 16 1 -8 —ﬂ —a.o-}
32 2 -8 -6 4 a1
0 0 1 0 1 an
8836 6627 —2209 -—T99 L23 b,
Luma 2209 —kb18 W7 376_ | b2 |
—.—10 10 10-l
20 0 =20
= o -2 =10 |x(0)
0] 0 0]
L 0 0 0-
136 18 —3eT
—425 =60 -T50
-89 -87 -858
-799 -282 -1128 ‘x1 (0) T
L 799 423 1692
) 255 %2(0)
|0
15

(33a)

(33b)

i
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Placing Eq. 33%b in the U = wx(0) format gives:

U = W(s)x(0)

—13682 - h25s : ~1882 ~ 60s ' —327s° — T50s

~289 | 87 | 858
———————— '———————l———-————
1 ~T99s + 799 | -282s — 423 :—1128s—1692
= 255 x(0)
£ (82 +28+2)

(34)

There will be three infinite feedback gains (refer to Eq. 11) since the
first controller is not proper rational.

e e zem
== (35)
1 799 282 1128 Lin

kg -

K =

Note that the first controller gains go to infinity, at a rate determined by
the ratios of the entries of the first row. Even though the gains are
infinite, the closed-loop transfer functions are readily computed:

X = [B+ AWl x(0)

255(8 + 1) 45 180

s4hg—1309 3278+423 1308s + 1692

x1(0)
~1368-34 ~-18s-42 ~T28 - 168
= x(0) (36)
255(82 + 28 + 2)
x3(0)

TR-1125-1 16
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The first W-H condition guarantees that D, the open-loop poles, cancel into
each numerator of [B + AW].

This example has been carried through in careful detail and demonstrates
all facets of the direct approach. Other examples, which demonstrate the
"bulleted" items in the abstract, are synopsized in the appendix. These
examples further demonstrate that the direct solution method contimes to
work, without need for modification, regardless of the form of R and Q.

TR-1125-1 L
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SECTION III
WIENER-HOFF FORMULATION — OPTIMAIL LINEAR STOCHASTIC CONTROL

The open-loop plant equation is modified by the addition of a process
noise vector n and an output equation:

X = Fx+Gu+n R x(0) = xg

(37)
y = Hx+v :
The transform of Eq. 37 is:
X(s) = [Is- F]‘lGU(s) + [Is - F1 V(v + xq]
= A(s)U(s) + B(s)[N(s) + %] (38)
The block diagram of the open-loop plant is shown in Fig. 3.

The time domain formulation of the linear optimal stochastic control

problem is given in Fig. 4 (Ref. 6) and the equivalent frequency domain
formlation is given in Fig. 5.

Figure 3. Block Diagram for the Plant and Measurements

TR-1125-1 18
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Open Loop Plant Optimaol u
and Sensors '! Controller
|
|
|
i
|
|
]

" Deterministic
Feedback
Controlier

Figure 4. Time Domain Formulation of the Linear Optimal
Stochastic Control Problem

Open Loop Plant , Optimal
ond Sensors Controlier t

" Deterministic
Feedback
Controller

Figure 5. Frequency Domain Formalation of the Linear
Optimal Stochastic Control Problem

TR-1125~1 19
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A separability principle formulation is first used. ‘That s, the Ky
matrix represents the regulator gaing, and now the task is to tind the
Kulman filter gning Ko This will be done by minimizing the mean squinre
crror between the state vector X and ita estimate, X, Using Mg, Yy BOlve

tor I and write X Bl

X BEy o r\‘_\m«i" KoY o REL '\'_\uul"(;n (3
Lt
' BLE Mml"1 K.\ (h0)
and write the error as
It R -x Wolv oo (N« xo)] = B[N+ xo1  * (")

Forming FF and taking the pradient. with respect Lo Wy, gives the W-H

cquat.ion (see Ret', 5 or reter to Appendix ()

Walayiye 0 MBoguethadl ] = Bog B, ] (")

where Wy i the muto speetra off the measurement. noise and q‘ﬁN' is the
auto spectra of the process noise,  The assumption of uncorrelated N and V
was used inowrriving at Fq. 420, although the more general case iz ecasily
treated.  Furthemore, x(0) and £(0) have been set equal to wero in order
to aimpllify the presentation, To compensate for this shortcoming, solution

of' the output regulator problem, via W-H, 1s glven in Appendix D.

" £ ~-X W,Y + B[I 4 Kplm]" W - AU - R[N v x,] 5 A n
Wo¥ + B[I 4 KalB]™ [T = T = KJMIGU = B[N + x|

Wa¥ — WollAU = B[N + x,]

= WalV o HR(N + x0) + HAU — HAU] = RIN + x,)

Therofore,
~

X=X W [V4HB(N+xg)] = BN+ %]

TR=110<1 0
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Observe that now the unknown of the W-H equation, Wy, is postmultiplied
by a spectral matrix which we will term the filter/observer spectral matrix.
Equation 42 can be solved, using the direct solution method, in exactly the
same manner as the regulator problem of the previous section. Moreover,
once Wy is found, the K, feedforward matrix can be computed using

-1 ~1
K, = B Wol[I — HWg]
A simpler result is obtainable, if one considers the properties of Wy as a

solution to a W-H equation. Rewrite Eq. U3 as

KolI — HW,] = [Is — FlW, (L44)

and observe that, when W is a proper rational function, one can find Ko
directly by letting s —wow.
lim .
K = o w sWy(s) (45)
One cannot use Eq. 45 in the singular cases which occur when some or all
of the measurement noise components are zero. In this event, (I — HW,)

is singular.

Once either Ko or Wy is known, the controller to measurable output

transfer functions can be computed using (refer to Fig. 5):

U = =K[I+ (I - Wa)AK ] gy * (46)

R = WaY - B[I + kB] ok, X
or . -1 -1
X = [I+B (I+KHB) GKI ' WpY
= [T +AK; - B(I + 1{21{!3)"1 (I + K HB - I)GK, ]—lWaY
= [I + AK“ - WaHAK] ]waY
TR~1125=~1 21
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or

U = —X[Is - F + GK; + KQH]—] KoY (47)

Clearly, Eq. 46 persists even when the feedforward gain matrix Ko is singular.

Fquation 46 gives an interesting limiting form. Suppose Fpr =0 (no
measurement noise) and H is invertable. Then W, = H™ satisfies Eq. k2.

But 1
We = H | = U = XKHY . (L8)

The following illustrative example clarifies the mathematical details.

A. ILLUSTRATIVE EXAMPIE, o7y # O

Suppose the open-loop plant is described by

o 1 o 0o 1 ny
X = S 1 S5 x+ |~ 2]u+]n (49)
1 0 - 1 0] nz
and Y = HX + V, giving
-4s+1 ! 8240541
]
8(—&8 + 1) : 8(28— 3)
f }
82541 ! s+ 1 Uy
X = AU+ B[N + x(0)] =
8(s2 + L)
Uo
2_, | ; 7
8 1 E s+ 1 : 5 (50)
!
=58 E s(s+1) : 58
8~1 | 1 =52-s+5
+ = [N +x(0)]
8(s2 +14)

TR-1125~1 22
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Let
- 1 2 -1 5
R = ) Q = =1 2
1 o 5 2 18 (51)

First, solve for the regulator gains; call this matrix Ky. Using the direct
methods of the previous section, the solution of the regulator W-H equation

gives
82+ 43+ 9 0 282 -2
282 4+35+9 §2+53+6 652+7Ts+32

= wx(0) = -
Yo x (s+1)(s+2)(s+3) X0 (2)

Application of the initial value theorem gives the feedback gains as

Ky = (53)

Further, the matrix of "regulator" closed-loop transfer functions is computed

as
X = [B + AW] x(0)
(s+1)(s8+3) 0 —6(s+1)
—5(s+3) (s+2)(s+3) s+ 32
0 0 (s+1)(s8+2)

= (0] )4
(s+1)(s8+2)(s+3) x© (54

To differentiate between the regulator poles and filter/observer poles,
let the regulator poles be

A, = (s+1)(s+2)(s+3) (55)

TR-1125=1 23
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P —

The second step is to find the Wiener filter Wy, which is tantamount to

specifying the Kalman gains, Ko. The filter portion of the problem has
the W-H equation

wa[@Vv' + I'IB‘Dﬁ-Nv B* H*] - MN_N' B*H* = ‘V (56)

For demonstration purposes, assume only one output measurement. Let

Y = X+V H = [1, 0 o0] (57)

and also let the noise sources be described by the intensities

85 0 0
¢\7V' = 1 ’ cﬁN' = 0 1 690 0 ( 58)
0 0 505

A straightforward computation gives

Py * HBwﬁN' ByH, = A_Q__ie. (59)
DD
where (specifying &> as the filter poles)
& = (8+ U4)(s+5)(s+ 6)
(60)
B = -8+ 1582 - Ths + 120
Also, one finds
858" ~ 186082 + 14,400
211587 + 1k, Thos
8587 + 24408 — 43008 + 14,%00
Bogy: BuHa = — (61)
TR-1125-1 2k
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The W-H equation has the form

a082 +8.8+a,

b082 +b1s +b2

c0s2+c1s+c2 %ZQ
/Xg DD

858 — 186082 + 14,400
211589 + 14, T40s

85s3 + 241082 — 43008 + 14,400
- = v (6?)

DD

Since each component of ¢ must contain D, the open-loop roots, we require
nine unknown coefficients to force the cancellation. Of course, each V¥
component can be treated separately, so that the basic problem is solving
three equations for three unknowns, rather than nine equations for nine

unknowns. Letting s = 0,2 gives these equations; for example,

(aosE + a8 + 32)‘3=0,2J

85s* — 186082 + 14,1400
—33 + 1532 - Ths + 120 s

=0,2J

The final result is
1582 + T08 + 120
7082 + 608
1382 + 28 + 120

Wy = (63)
(s+2)(s+h4)(s8+5)

TR-1125-1 25
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Finding the Kalman gains is now a simple task, since

15
Ky = sl_lju sWa(s) = | 0 (64)
13

Once either Wy or Ko is known, the input /output transfer functions can be

computed using Eqs. 46 or 47.

L182 + €08 + 19

17882 + 4868 + TO1
U = - Y
83 + 2182 - Ts — 27

Lis + 19
82 + 208 — 27

17882 + L486s + TO1
= - > Y (65)
és + 1)(s® + 208 - 27L

It comes as no surprise that the transfer functions describing the input/
output relationships between the controllers and measurable outputs may well
be unstable, as they are in this example.

Singular cases can also be treated using the direct method since Egqs. 42
and 46 can always be solved.
B. SOLUTION WITHOUT THE SEPARABILITY PRINCIFLE

The linear stochastic optimal control problem can be solved without
making use of the separability principle. This can be very useful when:

® The regulator part of the solution is singular
(K.‘ ).

TR=-1125-1 26
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4

® Tt is desirable to reduce the computational burden
(e.g., if one has a very high order system but only
a few measurable outputs and controllers, it is more
reasonable to compute a few transfer functions than
attempt to estimate a large number of states).
We may proceed according to Fig. 6.

In Fig. 6 we desire to minimize the performance index

1 C+I®  mmnmnnnan
J = 33 fc-j“ (X, QX + URU) ds (66)

vhere (73 denotes the expected value of (-).

First, form the integrand of the performance index

¢ = X, X+ URU (67)

using the equations (refer to Fig. 6)

—[1+WHA]™! W[V + HBN) (68)

[
L}

BN + AU = BN — A[I+WHAT™' W[V + HBN] (69)

>
L}

Note, from Eq. 68, that the closed-loop stability is determined by

Wa = ~[I+WHA] 'w * (70)

*The W matrix of Fig. 6 and, for example, Eq. 70, is not the W matrix
of the regulator equation U = Wx(0).

TR=-1125-1 27
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" }_'

Figure 6. Direct Solution of the Linear Stochastic
Optimal Control Problem*

Thus, we can minimize Eq. 66 with respect to W, and assure closed-loop
stability. The W-H equation becomes (using the variational method of
Ref. 3 or see Appendix C).

[R + AQAIW, [, + H B Qe Byliy] (71)

+AQB (pﬁN,B*H* = ¥

for the special case where N and V are independent. Therefore, solve the W-H

equation for Wy and compute W using Eq. 70, i.e.,
W o= ~WalI + HAW,]™! (72)
The separsbility principle is still very mmach in evidence in Eq. Ti, since

[R + A*Q,A] determines that group of closed-loop poles which correspond to
the optimal regulator solution, while @=., + I{B(pﬁN,(ﬁ B)' determines the

#*The W matrix of Fig. 6 and, for example, Eq. TO, is not the W matrix
of the regulator equation U = Wx(0).

TR-1125-1 28




ONR-CR215-260-1

remaining closed-loop poles which correspond to the optimal filter/observer

solution. Equation 71 can alsoc be solved using the algebraic methods pre-

viously discussed.¥*

Application of this approach gives the direct relationship of the

controller to the output since

An effect of formlating the problem in this way can be a dramatic reduc-

tion in dimensionality of the problem solution.

Application to the illus-

trative example given in the previous subsection yields the exact same

transfer function W with less numerical detail (i.e., the solution is the

same as Eq. 65.)

*In addition, a spectral factorization algorithm is given in Appendix B.

TR-1125-1




ONR-CR215-~260~1

SECTION IV

THE OPTIMUM COUPLER PROBLEM

The prime objective of the research effort reported herein was to
develop an optimal closed-loop solution for direct digital control of con-~
timious plants using a continuous cost function. As noted in the introduc-
tion, the solution concists of two parts — an optimal discrete control law
and the optimal (contimious) data holds. We have elected to proceed with
the development by extending the second method of the previous section in
a manner which accounts for sampled output signals which are to be processed
by a digital computer and outputted through a data hold (coupler) to the
control actuators. In the case of the contimuous filter/observer problem i
two spectral matrices came into play; the matrix which pre-multiplied the
unknown of the W-H equation was recognized as the regulator spectral matrix,
whereas the post-multiplier was recognized as the filter/observer spectral
matrix. Both were, in the illustrative example, rational functions of s.

In the W-H equation for the optimum coupler case, it will be seen that the
pre-mltiplier remains a function of s while the post-mmltiplier becomes a
function of the delay operator z = eST.

The situation of interest is depicted in Fig. 7. For brevity, N + x(0)

is taken as N. That is, the initial condition input vector will be suppressed.

N
—i B8 \")
A
t ul u X Y
: M |— A H i
|
DATA
HOLD

_/ T
T T

Figure 7. Linear Stochastic Optimal Discrete Control
of a Continuous Plant
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Let the integrand of the performance index, call it ¢, be the expected value
of the usual quadratic index:

T = X,QX + URU (74)

First develop expressions for the continuous X and U (the superscript T
will be used to denote that a signal is impulse sampled at 1/T samples/
second; a slash will be used to denote the transpose):

U = s = -1+ v T+ mmnT (75)

—AM(T + Wh(uaM) T WV + mBN]T + BN (76)

>
]

We choose to optimize with respect to the matrix of transfer functions
between [V + HBN]T and UT; therefore, let

WE o= —[T + wo(uam)T]"" Wl (T7)
and define

&, = V + HBN (78)

Er = BN (79)

so that Eqs. 75 and T6 become

(=]
[

wiZeT (80)

te
"

ATET + (81)

Substituting Eqs. 80 and 81 into Eq. T4 gives the integrand of the perfor-
mance index

o = [t WM RIMIET]

+ (&, + 6T WM A QlamiTe] + &) (82)

TR-1125-1 1
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Next, take the gradient of Eq. 82 with respect to the unknowns ng, take
the expectation and arrive at the W-H equation:

(R + A0AIMITp (6TET ) + A gu' (eTE) = v (83)

Assuming V and N to be independent noise processes gives (see Fig. 8):

1 T

weTgT' h TF [¢VV' * HBwﬁN'B*H*
2121

(84)

I

T [y + (1Bogy Bt (85)

The 1/T scale factor is in keeping with the definitions given in Chapter 10
of Ref. 7.* In a like manner, the cross spectra between the sampled vector
g? and the continuous vector 52 is simply the scaied continuous spectra
(Ref. T):

]
wETE = T Bogy Bullx (86)
172
| Y
T E
§ 4
LBL..H__Q’;,_MT_'-

. Figure 8. Spectral Noise Model

#The use of 1/T in Ref. 7 appears to be a "matter of convenience."
Other reference sources (e.g., Ref. 8) do not use it.
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The W-H equation now takes the form

T {1 T L .
[R + A,QA] MWL {T en + T (g BE,

+ = AR BH = v (87)

A. SUMMARY OF OPTIMAL COUPLER PROBLEM

Given the digitally controlled continuous system of Fig. 9, the W-H
equation, resulting from minimizing the expected value of a quadratic index,
is:

cpT

[R + A QA (MWL) [ ‘TTV v = (%,B*H*)T]

A,QBo=_ B,H,
TR, (88)
T
where W is defined as
WD o= =[I + wE(mam)T]) 7 T (89)
N
— B v
uy u X Y
M ] A H p—t—
DATA
HOLD
/ B B A——
T T

Figure 9. Linear Stochastic Optimal Discrete
Control of a Continuous Plant
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When Fge 838 has been aolved tor I\M'_,‘;, \»I}l Li chosien to be the discrete portion

and M (the coupter) o taken as the cont inuons part . A steaight forwaed

comput at fon then provides the digital contrel Iaw

wh w'fi'u ' (n.‘\m'w"':l ! )
which, tn turn, yields the cquat fon velating the cont inuneus contreol outpat

to the sampled messarement s

u YR ()

The W=l cquat Ton (Bge 839 can beosolved in twe ways: 1Y the direct method;
or Y apectral factorisation, The firat approach regquires ondy the appli-
cat fon off the Mandmmental concept that M\\II must be constructed tnoaomamner
which torees any pole (be it fn the s- or v=domain), which van generate

a posttive Mmetion of Cime, to cancel into each and every component of

-

Thin ia an algebeaienlly simple techuigque. The more computat jfonally dori-

cult apecteal Cactorteation solut fon method fa described in Appendix 15,
B. OPTIMAL COUPLER — SCALAR FXAMPLE

A sealar, single control point example aftords the opportunity to gain

fagnf Hiarity with the mathemat feal manipulat ions,

tart
| S\
A R T'-—.—'—I . H 1,0 (o
R | .9 8o, Wy o ] v e R ()
There fore,

" v R
KotoA Q4 (I ‘»‘~--» - ""‘T""'* v

R ~a ]

TR=11."-1 o
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-1_( 15\
* T \=-sc + 1

, 12 [_
2T

1
s+1

1

s~1

___IT

1 T
¢ (g B)

(9)

The power specira of sampled white noise has been taken as 1/'1‘:j rather than

1/T (see Ref. T for a discussion). Continuing, we find

.
1 15 z Z
GG, = —&3 + -
* ™ OoT [z-e’T z-eT_J
-
or z(e_T—eT
1 2)
= = |1+ —= (90)
TS (z—eT)(z—e))

s
S (z-€ T)(z—el)

~RT BT
- A leme zme ) (97)
T (z-e T)(z-e")

|-

Thus, the optimal filter/obscrver pole is defined by =z ~ e—BT; the value

of B as a function of T is given in Table 1

TR-112%=1 3%
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TABLIE 1
T B
0 4,
0.01 3.9998
0.1 3.9769
1. 3.0285
The only remaining computation is
1 120
-~ AQBaq. BH, = (98)
LR Pl-g+1)2(5+1)

The W-H equation is therefore

(c8+3)(s+3) ot (2=ePN)(z=e")
(Fs+1)(s+1) aTe(z—e—T)(z—-eT)

+ 120 -y (99)
(-8 +1)2(8+ 1)

The application of the direct approach requires that ng be such that the
numerator of y cancels all those poles which can produce positive time
functions — that is, cancel the terms s + 1 and z — e-T. A selection
of

-II‘
alz—-¢e)
I - —= =l (100)
(s + 3)(z—-¢ )
TR-1125-1 36
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where ag is an undetermined coefficient, is sufficient to achieve this goal.
Substitution of Eq, 100 into Eq. 99 gives

(-s+3)(s+3) x aO(z—e-T)

(=s+1)(8+1) " (543)(z~e)

(z=eBT) (2= FT) 120T _
X = T+ 5 = v (101)
(z—e ") (z—e") (-s+1)(s+1)
or
(~-s + 1)(-s+3)ao(z—eBT) + 120T(z-eT) (102)
= 102
(-s+1)2(s+1)(z—eT)
In Eq. 102, ag must be selected so that the numerator is zero when s = —1;
therefore,
-T T 2T
0 = -GGl - e Ot (103
2(4)(e " =€) [1-e ]
For example, when T = 1 sec,
-1. 73692 z2—e
wil o TLDER9IB(2-eT) g (104)

(s+3)(z-eBT)

Notice the general result. The data-hold poles are defined by the (con-

timuous) regulator spectral matrix, while the "discrete' poles of WE are

determined by the sampled filter/observer spectral matrix. Letting
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one then proceeds to compute the digital control law using the equation

WIo= —wIrr + (mam)Twll™ (106)
First,
T I S RV VY
(HAM)® = (s+1)(s+ 3) “ls¥1 T s+3
0 2 z
-2 z—e_T— z—e "
- L (e—T-e_jT)z (107)
2 (z-e ) (z-e )
Therefore,
(ma Tl = o (T-e7T)p  agls=<)
2 (}.—e;m')(z-e—BT) (z—e—BT)
and
I+ (HaM)Twl

22 —{e—BT + e_BT—-%O (eF -e_3T)}z Lo {(3B)T

(z—e2T)(z—e BT)

(z—e—aT)(z—e_T)
(z—e_BT)(z—e-BT) ’

a = 2 +B (108)

That is, as a consequence of the W-H process, the numerator of I + (HAM)TWE

contains the "open-loop root," z — e_T, as an exact factor. Therefore,

TR-1125-1 38
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..,a,o(z _e-T) (2 _e“3T z— e—BT)

z_e-BT (z_e—uﬂ')

~ay(z—¢ )

—aT
z—e )

(z—e7)

It is interesting to note that the output equation

(=]
"

can be written as

H

._WT YT
1 Jl-e0(z=7)
“ts+3 —aT

~MWTyT

(109)

(110)

(111)

That is, the data hold can be viewed in a manner quite similar to the zero

order hold (see Fig. 10).

It is now apparent that the optimal coupler

solution defines a data hold which forces the plant to follow a path, during

the intersample period, that is in a sense "scheduled" by the continuous

constraints placed on the solution by the (continuous) spectral matrix

R + A QA.

TR-1125-1
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Optimot Coupler
Impulse Response

Zero - Order Hold
/ Impulse Response
h{t)

Figure 10. Impulse Response of Zero-Order Hold
and Optimal Coupler

The example has focused on the numerical details of solving the W-H
equation when the regulator spectral matrix is a function of s and the
filter/observer spectral matrix is a function of z. In the next section
we treat a "limiting form" problem in order to focus on the properties of

the optimal coupler (in distinction to W-H solution techniques).
C. THE OPTIMAL REGULATOR/COUPLER PROBLEM

We return now to the notation of Section II and treat the optimal
coupler for the special case where N and V are zero — the only excitation
being the initial conditions. Recall, for the optimal regulator, the
Wiener-Hopf approach solves for the optimal controller. Therefore, it
does not distinguish between the two configurations shown in Fig. 11.
Given a performance index for which the integrand is

¥ = XX +URU (1n2)

TR-1125-1 Lo
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the W-H equation is

[R +AxQAJU, + AWQBx(0) = ¥ (113)

and the solution is

U, = W(s)x(0) (114)

For the configuration of Fig. 1la, the compensation is

K = -W[B +aw]" (115)
x(0) x(0)
—_ B B
U X U U
A —— M > A -
-K fpr—— T————- -K L-———{;————J
(a) (b)

Figure 11. Analog vs. Digitel Controller
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Whereas for Fig. 11b the compensation and data holds are defined by:

MK = W{(B + aW1T} (116)

If a discrete index is used,

¢ = xIxT+ ulrul (17)

then the W-H equation is (M given)

R + (AT qam) T uT + (a)T BT x(0) = (118)

The solution is

uT = wTx(0) (119)

The geins can be found with the (z-domain) initial value theorem.

Clearly, for a problem formulation which is as simple as the regulator,
the use of a continuous index forces the same smooth continuous motions
in the state and controller deflections for the discretely controlled case
as it does for the analog controller. The situation is not nearly as simple
to predict when the discrete index is used, because the migration of z-plane
nzeros, as a function of q and r, is usually not very transparent.

We will solve the W-H equations and give transient responses to demon-
strate these points. Specifically, three cases are considered:

1) Continuous index, continuous controller.

2) Continuous index, discrete controller, data holds
gpecified by W-H solution.

3) Discrete index, discrete controller, data holds
specified a priori.
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OPEN-LOOP PIANT
Let
-1 1 1
x = . X + U
=4 & 5
so that
s+ 1 s—-4 1
58 + 1 4 s+1
X(s) = U+ x(0) = AU + Bx(0)
s(s — 3) s(s — 3)
Suppose
28
™ 0
R = 1 (a scalar) s Q = 0 _
3
_ (s +1.28 +.2)(s2—1.28—.2) _ A
REAR = (-3)(5)Fs-3) 5

Since there is only one controller, exercising the first W-H condition

gives

[.8(s+1) | —(s+.2)] x(0)
s2+1.28 + .2

-
[s+.2 ; s+1]x(o)

U Ww(s) x(0)

TR~1125-1 13
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The matrix of closed-loop transfer functions is:

s=-4 1 8+ 1
4 s+1 58 + 1 8 + -
X = [B+AW)x(0) = P + P [s+.2 DT ]x(o)
(s-:.e 0
= x(0) (125)
| ° sl 1]

The feedback gains can be computed using either the initial value theorem
or Eq. 115:

K = [-81i1] (126)

As noted previously, Case 2 must have the same W-H equation, and therefore
the same solution:

Uo = W(s)x(0) = [818.2 E s1'1]x(°) (127)

The compensation (data holds and gains) is defined by Eq. 116:

-1
MK = —W%[B +AW]T}

)
|
—
w
. oo
M
w
+|4
—
| S—
N
|
o 0|
n
&
N

z—e !
—1(8+.2), | ~T(8+1)
_ -.8[1-e ] v+ (1—e )
= 8+.2 ; 8+ 1 (128)
TR=1125=1 Ly
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That is,

1 __e-T(s+.2)

S+ .2

1__e--‘I'(s+1) i -8 o

s+ 1

One may verify, by direct substitution of Eq. 127, that

U = -M1+kT(am)TI T kTBTx(0) = W(s)x(0)
and therefore
X = (B + AW) x(0)

Next, it is a straightforward exercise in discrete regulator theory to
obtain the Case 3 result [q's and r's were used which forced (z — e~T)(z - 5“2T)
as the closed-loop poles]. The gains that achieve this, as a function of the

frame time T, are given in Table 2 (u = —KxT = -[K1  Kol[X4 Xg]T).

TABLE 2

T=.1 T=.5 T=1

K4 —-. 792556055 | —. 771538772 | ~. 758184683
Ko .954136595 836065309 .T76195811

The discrete controller deflections, as a function of x(0), can be computed ;
using 4

T = —r1+x(aM)T777 kBT x(0) (132)

i and the continuous state motions using

X = Bx(0) + AMUT ' (133)
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(In computing EQ. 133 it is best to carry the analysis to a point where
the strongly unstable open-loop root has been cancelled out.) The tran-
sient responses, for T = 1, x4(0) = 1, x2(o) = 4 are shown in Fig. 12.

Note the poor transient response of the system designed with discrete
regulator theory. Whereas the continuous design was "decoupled" as far as
the initial condition response (each state containing only one mode), the
discrete design forced the correct poles, but the zeros go where they will.
This can be verified by checking the XT cloged-loop transfer functions:

z— .36991217 .0365270
.02k9T6780  z—.81669801] | X1(©)
(z—e 2Ty (z-¢T)

(134)
x5(0)

1.2 B

-2t
x'com =e
1.0

Optimal (discrete index)
Response

X,
6
4 Cont. and Optimal
Coupler Response
2+
1 | 1 I 1 | 1
OO | 3 6 7

t(sec)

Figure 12, Comparison of Transient Responses
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To summarize, the optimal coupler solution forces the same initial condi-
tion response as associated with the continuous regulator design. The discret
regulator design exhibits undesirable inter-sample response. Indeed, with
only two gains, the closed loop poles can be specified but the zeroes go
where they will — resulting in a design which cannot even match the continu-
ous response at the sampling instants.

TR-1125-1 7
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SECTION V
SUMMARY

A new class of problem is solved using the W-H approach, ‘The problem
treats the case of a continuous performance index, together with a con-
tinuous plant and sampled measurements to specity both the optimal (discrete)
| digital control law and the optimal (continueus) data holds to be used tor
coupling the digital control law to the plant actuators.  The optlmal coupler
orchestrates an inter-sanple controller response leading Lo closed loop
systoms which exhibit characteristics markedly superior to their discrete

regulator counterparts.
There are several Important circumstances in which direct digital desipn

with respect to a continuous cost tunction is crucial to efticiont and suc-

cesstul synthesis ot digital control laws, These circumstances are:

G -l R
et ba st s e

® Existing systems tor which the limits on core,
word length, sod computational speed havs been
reached (tor example, V/STOLAND).

® Applications where outrr loops are updated at
inherently slow rates [tor example, SIN-LD, MIS
NASA's remotely plloted research vehicle (m'nv)ﬁ.

® Applications wherein the cost of s st minicomputer
is not. Justifiable but an microprocessor s cost
etffective (for example, general aviation, digital
controllers for missiles, RPV's and other smart,
expendable weapons),

® Application of low data rate technlques for real-
time simulation problems.

In addition, the developments of Sections IT and 1IT make ¢lear the uni-
form manner in which the direct solution method treats singular problems.
That i3, no modification is required to solve cases tor which some (or all)
of the feedback regulator gains or some (or all) of the feedforward galins
of the filter/observer go to infinity,

TR-110-1 L8
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Furthermore, the examples of Appendix A demonstrate:

® The R weighting matrix need.not be positive definite
nor is it necessary that R~ exists. Q can be g O,

® Singular regulator and filter/observer problems (e.g.,
the cheap control problem) can be handled neatly.

® The weighting matrices, R and Q, can be explicit func-
tions of frequency.

® There are advantages in using non-diagonal Q and R
matrices.
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AFPPENDIX A

TLLUSTRATIVE REGULATOR EXAMPLES

Illustrative regulator examples, designed to demonstrate the '"bulleted"

items of the abstract, are synopsized in this appendix. In general, we list:

The open loop plant; kX = Fx + Gu
The transform of the open-loop plant; x = AU + Bx(0)
The weighing matrices; R, Q

Wiener-Hopf equation and the assumed form for the
optimal control

First W-H condition

Second W-H condition

Solution for the unknowns of Up

Optimal control gains

Matrix of closed-loop transfer functions

A=-1




SECOND-ORDER, TWO-CONTROLIER REGULATOR EXAMPLE

Cbservation

Choice of 9,R excludes feedback from second state

Open-loop Plant

[ f ) N N N

x(s) = U X020 = Av.sxd
4 g (a+1)(a+2) * Dig)

73 ¢ 23/9 -1/9 det[E+4, 8] = AT

&8 - &y
bjs + b1

o 1 : -1/9 ©

(s+3s-uM-s s + )

W-H Equation

1]

(5+A4,%10 + A,Bx(0)

U = Wux(0) Up = -
18t W-H Condition
(s~1)(ags+ay) + (28-T)(bg8+by) = —ls+3 E 11 x(0) s = =1, =2
2nd V-H Condition
(.87532‘ - %?7'2_82 + B.S)ans+u.1) + (L;: 8° - 498 — w)(bos +by) = 0O s=-~3 =
Solution for Unkiowns
8= -2 6 -3 -6 3 a5 -2 -2 ag -8/ o
8= 2 =2 -5 5 a -12 =6 a4 -24/9  -8/9
= —-3 -
8= -3 21 =7 =12 & by 0 0 bo -14/9 0
8= 4 28 -7 =16 4 b4 0 0 by ~42/9  -~14/9
Optimal Control Gains
-(5/9)l-2“/9i -8/9 . Therefore,
o x( —(14/9)8=u2/9 V' —gg | | %100 . 8/9 ©
Uy = W(s)x(0) = X = -sW(s) =
3 5 g+h —
(s +3)(a+h) xz(o) 8 /g 0

tatrix of Closed-lLoop Tranafer Functions

8+3 1 s8~-1 "8+17 FBJ‘Z‘M 8 g8+ 3 1
X1(O)
- [} -hg-2 8-4 L 1bg + 40 1h _ 0 5

(as1)(8+2) (ar 1)(a+2) 9(e+3)(8sk) ~  (8+3)s-) |, (o

X = [Bs+AWlx(0) =

TR-1125-1 A-2




EXAMPLE — UNSTABLE CPEN-LOOP PLANT, SINGLE CONTR.LLER

Cbservations

Wi-H is "dimensioned" by the controller, not the state; the single controller problem requires only
the first W-H condition.

We can Xeep an open-loop root as a closed-loop root if we so desire.

3 can be identically zero; the method continues to work without the need for medification.

Jpen-ioop Flant —5+1 (s=1)¢ s—-1 -1
o s(—"5+ 1) -5 s(s~1) -5
ot o ) )
x| 1 alxe|—2]u X(s) e R [C) L N Cllak RE YS!
10 1 s(s° =28+ 1) s(s" —"s+2)

Weighting latrices

a = 0 det[R + A, QA] RDD = R[s(s”—-08+7)][~s(s%+ . s+2)]

R > 0 A s{s® +28+2)
524~as+aa
a9 1 &

(R+A,A]Us + A, Bx(0) =

v Uo = wx(0 Uo =
° «(0) ° 5(87+ 25+ ")

1st W-4 Condition (only one needed in the single controller case)

(—28+1)(aoseta.|s+a2) = -A[(s-1)2 s-1 -1)x(0) §=0, 1+}
Solutions for Unknowns when D = O ap = ¢
1 - an 4 " x1(0) a, . L 12 4
= Xg(o) = = ?
-2 ay L 4 b x3(0) aq -6 8 -1¢

Cptimal Control Gains

bs-16 }128-8 | bg-1¢

x(0) K = —sW(s)

1
Us = W(s)x(0) = —=—
° (s) (©) p 82 + 28+ 2 Lim § » o

Matrix of Closed-Loop Transfer Functions

(8=1)2 s-1 -1 -8+ 1
-8 s(s-1) -8 ~r8+ 8
(o) s-1 1 85 —g+1 s —8—1] {bsg-1¢ 128-8 Ls—1) ©
X = [B+AW]x(0) = + = x(C
(B Av] s(sz—zs”’) D 58 + g +.)
5824+ 108-3  58-9 -13
~13s =8 -9s -13s
X, . x1(9)
x| « L9823  1osv9 ca?ii9scu3d [0,
‘ - v8{82 + 28 + ) :
X3 x3(0)

ilote: If the open-loop plant had been stable, the selection of " = O would result in a feedback
gain matrix K = 0O,

TR=1125=-1 A-3




EXAMPLE — Q,R MAY BE FUNCTTIQUS OF FREQUEIICY

Observation

Lead/lag compensation

Cpen-To0p Flant
e e e e S e

1 s+ 1
o 1 9 X1 s 0 s x,(0)

x = x + u = = U(s) + ——

0 - 1 Xz 5(s+1) s(s+1) x5(0)
Weighting Matrices
52 .5112 9734+ 0 det{R+A,CA] = (s+L4)(s%+27s-234)
R = —_2d°= 2 = .
-8 +9 0 —483¢ X (=8 +L)(s5 =275+ 25.)
W-H Equation

2, + A - Ll(sg - v 483 g¢ ol
[R+A, NIV, +A,38x(0) = ¢ B398 5 818 + 8,) - A(8 + 9)[ 973 (s-1) 3(8¢ - 9T3u4) x(2) <

DBA(s + 3)(=s - 3) i

W-H Requirements
——— Lmaeafcments
aps? + a5+ 8,

8= (8+4)(82 4278+ 2%) U = —_— ¥ ilumerator = 0 when DA = 0, 5 = -3
Solutions for Unknowns
8 = 0 8 = — s = -3
&2 = [-936 -936]x(0) 9ag-3a;+ay = 0 y-ay+ay = [ —62k] x(0)
9 -3 29 0 0 ag -312 9
-1 1 ay = [o] -5 = a = -1248 39
0o 0o 1 8 935 —93¢ a - 936 -936

2{0)
Optiral Control Compensation 1
u D ! x
U =ux(0) = [=(31287+12488+930)} —(3125.936)] l -

(8*4)(s-¢27s+234) x(0)

a L312(s+3)(5+1) ! 312(s +3)] x(0)
(8+4)(87+ 278+ 23h)

~7 . 1
X o= wWBean)”! . [213‘7852 :]

Matrix of Closed-Loon Transfer Functions

[324318+30 a#}\’)]
X = [B 4.’\"]]1(0) - —)1”(8 + 3) s(! + }O) XI(O)

(8+54)(8%+ 278+ 234) x~(0)

i
TR-1125«1 Aab




EXAMPLE — ONE "CHEAP" CONTROL

Open-Loop Plant 48+ (8+1)2 82-1 8+1 5
o 1 o o 1 s(4s+1) s(28-3) -8 s8(s+1) =8
2 - v
x= |5 1 slx+}u 2lu x(s) - B} 8¢ s 5°-8+23 4(0)
8(82 + 4) s(szoh)
1 0 - 1 0
= Au + Bx(0)
Weighting Matrices
o] o} ok
R = Q = 0 det[R+A,A] « s2+28+2 = (8+1)%+ (1)
0 3 -T705
W-H Fquation t("? s am a2]
[R+A,QAJUo +A,GBX(0) = v U, = wx(0) Uo b1s + b2
82 + 28 + 2

Note: Place the "burden” of the extra coefficient on the controller which is excluded from the
performance index.

18t W-H Condition

(-lu+1)(u032+a1s+52)+(52+2s+1)(b1a+b2) = -A8°-1 8+1 5]x(0) 8 =0, +2]

2nd W-H Condition

(7058h+22@82¢6”)(80824518+%)+(}29‘3+59$32+8’$68+6”)(b,84b2) = 0 8=<=14+}

Solution for Unknowns -136 - 18 - 327
425 - 60 - TS50
-4 16 1 -8 3lag -10 10 10 ag 28 - 87 - 88
% 2 8 = ufla 20 0 —20 ay -199 -282 -n1zB[] x,(0)
0 0 1 0 t]ae] =} 2 2 -10x(0) =>{ap | 799 k23 -vége x5(0)
8836 6627 -2209 -199 L23}| v, o 0o o0 b, x3(0)
Lh18 2209 L8 4T 376}| bo 0 o o by
Optimal Control Cains
U = W(s)x(0)
1 '
[-1 3682 —lpss —289-:_—1812 ~ 608 =87 | ~32782 — 508 — 858]
—————————————————— 13 18ky 32
1 —799s + 799 \ —oB2s—b23 | _1128s-1692 o "o m°
"B x(0) ; k=79 28 118
(l2 +28+2) | iy il Lin

" Ky e
Note: The first controller gains go to infinity, at a rate determined by the ratios of the entries °
of the first row of the equation for K, above, right.

Matrix of Closed-Loop Transfer Functions

255(8+ 1) 45 180
5uks -1309 3078+ 423 13088 + 1692 x,(0)
-1368-3%  -18s-k2  —Tos-168 !

X = [B+ aW]x(0)
255(8° + 28 + 2)

XQ(O)
x3(0)
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EXAMPLE — R = 0, IWO “CHEAF" CONTROLLERS

Chservation

W-H approach requires no modification when R = 0.

Plant g1 (+1)? 841 5
v R s(-4s-1) s(2a-3) e(s+1) s
o 1 o 0 1 » )
x = J5 1 slxe | 2lu x(e) 2 AF=8cl 801 J, M 11 WS
1 0 =1 1 o_l a(a?+4) 8(s” 4 4)
= Au + Bx(0)
Keighting Vatrices
o o 10 o
R = 1= j0 32 o det{R+eA U) a (s+1) A reduced by two
Lo 0 o o =
W Equation a8 - &2]
b8 - b,
[R+A A, + A, Bx(0) = & Up = Wx(0) = A —=

1st W-H Condition
(<8s1) (a0 a2) + (8 1)2(0gmebz) = (8711 841 | 51x(0)

2nd V-3 Condition

where
Ka(ajs+8p) +Ng(bys+by) = © Np = q1(-1632+1)+q2(—02)(-16l24'I)oq;(lholz»I)
when 8 = -1 :q(hl,¢932¢6l#l)¢-q(-8""010!30512)0q(l3‘2l9t2501)
Ng = q, > 3
Solution for Unknowns -8 9 1w
12 -8 50
16 1 =8 =31l 5 3 -5 ay =5 15 60 x(0)
2 -8 6 Ll _ 0 = -0 x(0) | W -20 8o (3)
o 1 0 1}IYy 1 -~ =5 b 26 N
7 -1 -3 3|{w o o o v x3(0)
Optinal Control Gains
U = w(a)x(0) X = —gW(s)
s e
—188+12 | 98-6 :w--so]
L RRAARE ARl e x1(0)
.2 [-56.;11.L§l—2o:60--80 x;(o) oo |te -9 -0
(8+1) x3(0) % 568 ~158 608 .1:1:-

Even though the gains go to infinity, they must do 80 with the r

when 8 = O, +2}

atios defined by the equation for

K and the result will be a well-defined matrix of ciosed-loop transfer functions. We can, of

course, compute the result directly using X = [B « AW] x(0).

Matrix of Closed-Loop Transfer Functions

2~ s+t 5 ~lig+ 1 (8+1)2
58 s(s+1) s o(~us+1) o(28-3) ~188 + 12 . 98-6 , 108 ~%0
X - 8- T TS N O nl ul 68+ b | 158 -20 | 60a ~80 x(0)
(82 + 4) 26(8+1)
=30 15 €
<0 20 8 x,(0) The “reduced state" answer is obtained
-18 36 without the necessity of any limiting
- 1 ; x,(0) procedure applied to the feedback gains.
2+
x3(0)
TR=1125~1 A=6




IMPLICIT MODEL FOLLOWING i
Observation

W-H approach requires no modification when the model is unstable.

y = Hx

x = Fx+Gu => X(a) = (18-F)"'GU+ (Is—F) 'x(0) = AU+Bx(0)

o . . C+ Joo
_/; }[y—w]'“-.[y—Ly]w'Ru{dt = 2173 fc | (s - L)Y] s[(Is = 1)Y] + U,RU ds

~Joo
W-H Equation
[R+AH,(I1s-L),Y(Is~L)HAJU + A H,(Is—L) AIs ~L)HBx(0) =
Example 1 ]
1 s+3 1
[s ] [ -2 S] x1(0) A

0 1 0
x = [ ]’“ ]“ v B=1 X8 = EEE U ¢ e |20
- -3 1 x3(0)
o

R = 0O 8 -1
L = [ ] {Is-L] = [ ] det[Is—-L) = s2+8=-12
2 = I 12 = ~12 s+1 = (s+1)(s-3)

W-H Equation:
(s2-g-12)(s2+3~12) [808 + a1 (82 ~8=-12)[-148=38 | s2+8-12]

- 0= * = x(0) =
Lha + : 1

Uo = Wx(0) = 0 :sfi)'(f-‘;) ]x(o) Therefore, K = [=14 , 2]

[s+1 1] (©)

x4(0

X = (BeaWlx(o) = L 12 sJ|™ = [1s - L] x(0) Check

(s+4)(8=3) | x,(0) -

Example 2
2 =
Same as Example 1, except R =0 Q=1 L = [ ]
o] 1
Therefore,
. s—2 1
(Is-1) = [ ] det[Is—L] = (s-1)(8=2)
o] 8 -1
(=12 68]
4 Up = Wx(0) = mx(o) =2 X = [0 =£]

53 1] [a—1 -1
X = [B+AW]x(0) = 2“? 84 x(0) fre-u”' = 22 8220 4 g ,

8c—384+2 8- -384+2 :

. Therefore, ;

Choice of ) = [ matches only the poles.

¥ TR=1125-1 A-T
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APPENDIX B
SOLUTION USING SPECTRAL FACTORIZATION

The regulator W-H equation is

[R + A, QAU + A, QBx(0) = y (B-1)
Since we may write .
(R+A,@] = [I+AKXIRI+ K] = FRF (B-2)
one may verify, by direct substitution, that
Vo = —F 'R IF, A,@x(0)], (B-3)

is a solution to Eq. B-1. This solution requires only that R exist.

The Wiener-Hopf equation for the filter-observer problem is

[R+AQAVa[om,, + HBumy B H,] + A,QBep BH, = ¥ (B-4)
Setting
Wyr + }BQ)ﬁN.B*H* = GG, (B-5)
R+AQA = FRF (B-6)
A,QBogy B MH, = N (B-7)

gives the following form for Eq. B-k:

(F RF)WsGG, + N (-8)

[}
<

TR-1125-1 B-1
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By direct substitution, one may verify

W = —F K [F, NG,'] ¢

satisfies Eq. B-8. That is,

[}
-

-1 wa! =1 o)
-r,[F, NG ] G, + F,F,'NG, G,

1 el
F*{F* NG, }_G*

-1 - =1 =1
-5 NG, ¢ FING }G*

(8-9)

(B-10)

(B-11)

Equation B-11 satisfies the W-H requirement of forcing ¥ to consist of

time functions which exist only for negative time.
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AFPPENDIX C
A VARIATIONAL METHOD FOR DERIVING W~H EQUATIONS

Suppose the integrand of the performance index (or a particular element

of the index) has the form

¢ = XJHY

the first variation is found by taking the gradient with respect to Hy:

i}

Vou, XHY]' = X"(=s)Y'(~s)H'(s)

Example 1:
From Section II, the regulator problem gave

o = X,QX + URU
with
X = AU + Bx(0)
Therefore,
o = [Ushx+x'(0)Bx] Q [AU + Bx(0)] + UsRU

Taking the gradient with respect to Uy gives:

Voy, = [A,]'[Q(AU + Bx(0)]' + (RU)’

Take the transpose and write

[R +AQA] Uy + AW@Bx(0) =

verifying Eq. 6.

TR-1125-1 C-1
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Examgle 2:

From Section ITT (see Eg. W1), since [setting x(0) = 0]}

=
it

X=X = W[V +HBN] ~ BN

we write

=]
H

[(NxByH, + VyWoy ~ NxBx][E]

Take the gradient with respect to Way:
V®gy = [NaBsHxt+ Vx]'[E]?
Choosing to work with the transpose gives
[Wa(V + HBN) = BN] [NuBaHsx '+ V]
Expanding gives:
Vo = W [VNBH, + VW + HBNN,B,Hy + HBNVy]
-BNN*B*I{* - BNV*
The expectation operation on Eq. C-12 gives

Wa[Q)VNcB*H* + (pvvv"' HB(p-ﬁNanH* + HBoggy 0 |

= Doy Bl = Bogy, = v

TR-1125=-1 Cc-2

.(C-B)

(c-9)

(c~10)

(c-11)

(c-12) K

(c-13) |
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If V and N are independent, Eq. (C-13) reduces to

Walogye + HBogy Balx] = Bogy Balx = v

This verifies Eq, h2.

F_txaﬂle 3:

Equation 67,

‘ ® = XX + UuRU
with
U - W[V + HBN]
X = AW [V + HBN] + BN
becomes
) [NuBx + (NyBxHx + Vi )Wq,Ax]Q[AWq(V + HBN) + BN]
+ [NaBxHx + V] WgquR Wy [V + HBN]
Therefore
Va, - [NeBalle ¢ Vol }[A*Q(Awa(v + HBN) + BN)]"

+ [RH(V + HEN)]':

Again, we prefer to work with the transpose

TR-112%-1 c-3

(C-14)

(€-15)

(C-16)

(c-17)

(c-18)

(C-19)
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(c-20)

% 0y, )" = | AxQG [V + HEN] + A4QEN + B, [V + HEN]| [W,B,H, + Vi)

f

! = [R +AxQAIW, [V + HEN][NuBuHy + Va] + AuQBN[NuBaHy + V]

: (C-z1)
Given Pn' = %Fy' = O, then taking the expectation yields

E [R + A*QA]wa[q)vvl + %|B*H*] + A*QB%N,B;H* = ¥ (C-22)

verifying Eq. T1.

TR-1125-1 C-b
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APPENDIX D
THE OUTPUT REGULATOR

The system is linear and time invariant:

X = Fx + Gu
(D-1)
y = Hx

Transforming Eq. D-1 gives

X = (18 -F)7'6U + [Is - F1" ' x(0)
(b-2)
Y = HX
The block diagram, assuming a control law,
¥ = —KX (K may be frequency dependent)
is shown in Fig. D-1.
From Fig. D-1, write
-1
U = —{I+KdA] KiBx(0) = W,HBx(0) (D-3)
x{0)
—_ B

Figure D-1. (losed-Loop Configuration

TR-1125~1 D-1

D e
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Minimizing the quadratic index,

1 c+jeo
seag [ mEevme  xexen

with respect to Wa gives the W-H equation as:
[R+A, QAIWa(HB x(0) x' (0) B,H ) + A QBx(0) x'(0) BH, = v (D-5)

Equation D-5 can be solved using the direct approach or spectral factoriza-

tion. Using the factorization approach, write Eq. D-5 as

[FRFJWaGG,+ N = v (D-6)
so that
Wo = —F R [F, NG,'],¢" (D=7)

F can be computed using the "full state" feedback regulator gains:

F = I+KA (D-8)
for example:
-1 1 1
ol PR L P L (0-9)
Therefore,
8+ 1 s—4 1
(0)
58 + 1 =4 8+ 1 X3
X(s) = o U+ (D-"O)
s(s—3) s(s-3) x2(0)

TR=-1125-1 D-2
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Let (8
™
R =1 ’ Q =
1
° -
L J
so that
det[R+AQA] @ s2+1.2s+.2 = (s+.2)(s+1)
Also note

det[HB x(0) x'(0) B,H,]

C'l

x12(0)(—s +a)(s+a)

pD
Letting
x2(0) - hx1(0)
* 7 x,(0)
gives
.2a
0 - (a+3.2)[s+————a+3‘2]0
a (s +a)a
20
‘- (a+3 2)E+a+3%;|
8+ 1
TR=1125-1 D-3

2
' X (O) - ux,(o))
x?(o)[ ( YL 0 ]

(D-11)

(D-12)

(D-13)

(D-14)

(D-15)

(D=-16)
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. 2 ‘
- 3.2 -4 11
U = (a+3.2)[s + “"3'2] (s l : x(0) (D-17)
(s +a)d
[ s—4 1 T
(s+.2)(s+a) (s+.2)(s+a) x7(0)
* s (5-18)
D-1
—(5a, + 20) s+(5+a) x2(0)
L(%+1)(s+&5 {(s+1)(s+a) ]
“q
Note that x1(0) = O gives K = =. i
Given perfect knowledge of xy(0), x5(0), observe

i 1
I (s = u)x(0) + x2(0) ] x1(0) ]
(s +.9(s + a) T+ .2
x - |\~ -7 = (D-19)
—(5a + 20)x(0) + [s + (s + a)]x(0) x5(0)
L (s + 1)(s +a) s+.10“J ;

TR-112%-1 D-b
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